Minimal digit sets for parallel addition in non-standard numeration systems

Christiane Frougny
LIAFA, CNRS, and Université Paris 8

Numeration and Substitution 2012
Kyoto, June 2012

Joint work with Edita Pelantová and Milena Svobodová
(CTU Prague)
Signed-digit representations

Base 10 and digit-set $\{-5, \ldots, 0, \ldots, 5\}$ Cauchy 1840

Base 10 and digit-set $\{-6, \ldots, 0, \ldots, 6\}$ Avizienis 1961

Base 2 and digit-set $\{-1, 0, 1\}$ Chow and Robertson 1978
Signed-digit representations

Base 10 and digit-set \{-5, \ldots, 0, \ldots, 5\} Cauchy 1840

Base 10 and digit-set \{-6, \ldots, 0, \ldots, 6\} Avizienis 1961

Base 2 and digit-set \{-1, 0, 1\} Chow and Robertson 1978

Redundancy
Algorithm of Avizienis 1961

Base $\beta = b$, $b \geq 3$ integer, parallel addition on alphabet $\mathcal{A} = \{-a, \ldots, 0, \ldots, a\}$, $b/2 < a \leq b - 1$.

Input: $x_n \cdots x_m$ and $y_n \cdots y_m$ in \mathcal{A}^*, $m \leq n$,
$x = \sum_{i=m}^{n} x_i \beta^i$ and $y = \sum_{i=m}^{n} y_i \beta^i$.

Output: $z_{n+1} \cdots z_m$ in \mathcal{A}^* such that

$$z = x + y = \sum_{i=m}^{n+1} z_i \beta^i.$$

for each i in parallel do

0. $z_i := x_i + y_i$

1. if $z_i \geq a$ then $q_i := 1$, $r_i := z_i - b$
 if $z_i \leq -a$ then $q_i := -1$, $r_i := z_i + b$
 if $-a + 1 \leq z_i \leq a - 1$ then $q_i := 0$, $r_i := z_i$

2. $z_i := q_{i-1} + r_i$
Avizienis

\(\beta = 10 \), digit-set \(\{-6, \ldots, 0, \ldots, 6\} \)

\[
\begin{array}{cccccccc}
x & \mapsto & 2 & 5 & 2 & 5 & 5 & 6 & 0 & 3 \\
y & \mapsto & 5 & 1 & 2 & 2 & 5 & 4 & 0 & 6 & 5 \\
z & \mapsto & 5 & 3 & 7 & 4 & 10 & 9 & 6 & 6 & 8 \\
0 & \mapsto & 1 & \overline{10} \\
0 & \mapsto & & 1 & \overline{10} \\
0 & \mapsto & & & 1 & \overline{10} \\
0 & \mapsto & & & & 1 & \overline{10} \\
0 & \mapsto & & & & & 1 & \overline{10} \\
0 & \mapsto & & & & & & 1 & \overline{10} \\
0 & \mapsto & & & & & & & 1 & \overline{10} \\
0 & \mapsto & & & & & & & & 1 & \overline{10} \\
z & \mapsto & 5 & 4 & 3 & 3 & 1 & 2 & 3 & 3 & 2 \\
\end{array}
\]

Minimal polynomial of \(\beta \) is \(X - 10 \)

\(1 \ (\overline{10}) \) is a representation of 0
Algorithm of Chow and Robertson 1978

Base $\beta = b = 2a$, $a \geq 1$, parallel addition on $A = \{-a, \ldots, 0, \ldots, a\}$.

Input: $x_n \cdots x_m$ and $y_n \cdots y_m$ in A^*, $m \leq n$,
$x = \sum_{i=m}^{n} x_i \beta^i$ and $y = \sum_{i=m}^{n} y_i \beta^i$.

Output: $z_{n+1} \cdots z_m$ in A^* such that $z = x + y = \sum_{i=m}^{n+1} z_i \beta^i$.

for each i in parallel do

0. $z_i := x_i + y_i$

1. if $a + 1 \leq z_i \leq b$ then $q_i := 1$, $r_i := z_i - b$
 if $-b \leq z_i \leq -a - 1$ then $q_i := -1$, $r_i := z_i + b$
 if $-a + 1 \leq z_i \leq a - 1$ then $q_i := 0$, $r_i := z_i$
 if $z_i = a$ and $z_{i-1} > 0$ then $q_i := 1$, $r_i := -a$
 if $z_i = a$ and $z_{i-1} \leq 0$ then $q_i := 0$, $r_i := a$
 if $z_i = -a$ and $z_{i-1} < 0$ then $q_i := -1$, $r_i := a$
 if $z_i = -a$ and $z_{i-1} \geq 0$ then $q_i := 0$, $r_i := -a$

2. $z_i := q_{i-1} + r_i$
Chow and Robertson (Cauchy)

$\beta = 10$, digit-set \{-5, \ldots, 0, \ldots, 5\}

$$
\begin{array}{cccccccc}
 x & \mapsto & 2 & 5 & \overline{1} & 0 & \overline{3} & 2 & 0 & 3 \\
 y & \mapsto & 1 & 3 & \overline{1} & 2 & 5 & \overline{5} & 3 & 5 & 5 \\
 z & \mapsto & 1 & 5 & \overline{6} & 1 & 5 & \overline{8} & 5 & 5 & 8 \\
 0 & \mapsto & \overline{1} & 10 \\
 0 & \mapsto & \overline{1} & 10 \\
 0 & \mapsto & 1 & \overline{10} \\
 0 & \mapsto & 1 & \overline{10} \\
 0 & \mapsto & 1 & \overline{10} \\
 z & \mapsto & 1 & 4 & 4 & 1 & 4 & 3 & \overline{4} & \overline{4} & \overline{2}
\end{array}
$$
Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^\mathbb{Z}$ is a symbolic dynamical system if it is closed and shift-invariant.

$S \subseteq \mathcal{A}^\mathbb{Z}$ and $T \subseteq \mathcal{B}^\mathbb{Z}$ symbolic dynamical systems.
$\varphi : S \rightarrow T$ is a p-local function if $\exists r, t > 0$, and $\exists \Phi : \mathcal{A}^p \rightarrow \mathcal{B}$, with $p = r + t + 1$, such that if $u = (u_i)_{i \in \mathbb{Z}} \in \mathcal{A}^\mathbb{Z}$ and $v = (v_i)_{i \in \mathbb{Z}} \in \mathcal{B}^\mathbb{Z}$, then

$$v = \varphi(u) \iff \forall i \in \mathbb{Z}, \ v_i = \Phi(u_{i+t} \cdots u_{i-r}).$$

The image of u by φ is obtained through a sliding window of length p.
r is the memory and t is the anticipation of φ.
φ is called a sliding block code.
Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^\mathbb{Z}$ is a **symbolic dynamical system** if it is closed and shift-invariant.

$S \subseteq \mathcal{A}^\mathbb{Z}$ and $T \subseteq \mathcal{B}^\mathbb{Z}$ symbolic dynamical systems.
$\varphi : S \rightarrow T$ is a **p-local function** if $\exists r, t > 0$, and $\exists \Phi : \mathcal{A}^p \rightarrow \mathcal{B}$, with $p = r + t + 1$, such that if $u = (u_i)_{i \in \mathbb{Z}} \in \mathcal{A}^\mathbb{Z}$ and $v = (v_i)_{i \in \mathbb{Z}} \in \mathcal{B}^\mathbb{Z}$, then

$$v = \varphi(u) \iff \forall i \in \mathbb{Z}, \ v_i = \Phi(u_{i+t} \cdots u_{i-r}).$$

The image of u by φ is obtained through a sliding window of length p.
r is the **memory** and t is the **anticipation** of φ.
φ is called a **sliding block code**.

A function is computable in parallel iff it is a local function.
Excursion into symbolic dynamics

A subset $S \subseteq \mathcal{A}^\mathbb{Z}$ is a **symbolic dynamical system** if it is closed and shift-invariant.

$S \subseteq \mathcal{A}^\mathbb{Z}$ and $T \subseteq \mathcal{B}^\mathbb{Z}$ symbolic dynamical systems.

$\varphi : S \to T$ is a **p-local function** if $\exists r, t > 0$, and $\exists \Phi : \mathcal{A}^p \to \mathcal{B}$, with $p = r + t + 1$, such that if $u = (u_i)_{i \in \mathbb{Z}} \in \mathcal{A}^\mathbb{Z}$ and $v = (v_i)_{i \in \mathbb{Z}} \in \mathcal{B}^\mathbb{Z}$, then

$$v = \varphi(u) \iff \forall i \in \mathbb{Z}, \quad v_i = \Phi(u_{i+t} \cdots u_{i-r}).$$

The image of u by φ is obtained through a sliding window of length p.

r is the **memory** and t is the **anticipation** of φ.

φ is called a **sliding block code**.

A function is computable in parallel iff it is a local function.

A local function is computable by a finite sequential transducer.
Differences between the two algorithms

Decision (choice) in step 1:
- Avizienis algorithm is **neighbour free**.
- Chow and Robertson algorithm is **neighbour sensitive**.

Locality: Addition on \mathcal{A} is a function from $(\mathcal{A} + \mathcal{A})^\mathbb{Z}$ to $\mathcal{A}^\mathbb{Z}$
- Avizienis addition is **2-local**.
- Chow and Robertson addition is **3-local**.
Parallel addition

Theorem
(Frougny, Pelantová and Svobodová 2011)
Let β with $|\beta| > 1$ be an algebraic number. If all the algebraic conjugates of β have modulus $\neq 1$ then one can find an alphabet $A = \{-a, \ldots, 0, \ldots, a\}$ on which parallel addition is possible.
Parallel addition

Theorem
(Frougny, Pelantová and Svobodová 2011)
Let β with $|\beta| > 1$ be an algebraic number. If all the algebraic conjugates of β have modulus $\neq 1$ then one can find an alphabet $A = \{-a, \ldots, 0, \ldots, a\}$ on which parallel addition is possible.

The proof gives a constructive method to obtain from the minimal polynomial of β a polynomial satisfied by β with one dominant coefficient, which gives a representation of 0 used in the algorithm.
Parallel addition

Theorem
(Frougny, Pelantová and Svobodová 2011)
Let β with $|\beta| > 1$ be an algebraic number. If all the algebraic conjugates of β have modulus $\neq 1$ then one can find an alphabet $A = \{-a, \ldots, 0, \ldots, a\}$ on which parallel addition is possible.

The proof gives a constructive method to obtain from the minimal polynomial of β a polynomial satisfied by β with one dominant coefficient, which gives a representation of 0 used in the algorithm.

The algorithm is a generalization of Avizienis.
Parallel addition

Theorem
(Frougny, Pelantová and Svobodová 2011)

Let β with $|\beta| > 1$ be an algebraic number. If all the algebraic conjugates of β have modulus $\neq 1$ then one can find an alphabet $A = \{-a, \ldots, 0, \ldots, a\}$ on which parallel addition is possible.

The proof gives a constructive method to obtain from the minimal polynomial of β a polynomial satisfied by β with one dominant coefficient, which gives a representation of 0 used in the algorithm.

The algorithm is a generalization of Avizienis.

a can be larger than necessary.
Remark
Let β with $|\beta| > 1$ be an algebraic number of degree d.

- If d is odd or
- if $d = 2$ or
- if d is even ≥ 4 and the minimal polynomial of β is not reciprocal,

then β has no conjugate of modulus 1.
The Golden Mean

$$\beta = \frac{1+\sqrt{5}}{2},$$ the Golden Mean.

Every real number ≥ 0 has an expansion on alphabet $\{0, 1\}$. Addition is not local on $\{0, 1\}$.
The Golden Mean

\[\beta = \frac{1 + \sqrt{5}}{2}, \] the Golden Mean.
Every real number \(\geq 0 \) has an expansion on alphabet \{0, 1\}.
Addition is not local on \{0, 1\}.

Using \(\beta^4 + \frac{1}{\beta^4} = 7 \), addition on \{-5, \ldots, 5\} is a 9-local function.
The Golden Mean

\[\beta = \frac{1 + \sqrt{5}}{2}, \text{ the Golden Mean.} \]
Every real number \(\geq 0 \) has an expansion on alphabet \(\{0, 1\} \).
Addition is not local on \(\{0, 1\} \).

Using \(\beta^4 + \frac{1}{\beta^4} = 7 \), addition on \(\{-5, \ldots, 5\} \) is a 9-local function.

Using \(\beta^2 + \frac{1}{\beta^2} = 3 \), addition on \(\{-3, \ldots, 3\} \) is a 13-local function.
The Golden Mean

\[\beta = \frac{1 + \sqrt{5}}{2}, \] the Golden Mean.
Every real number \(\geq 0 \) has an expansion on alphabet \(\{0, 1\} \).
Addition is not local on \(\{0, 1\} \).

Using \(\beta^4 + \frac{1}{\beta^4} = 7 \), addition on \(\{-5, \ldots, 5\} \) is a 9-local function.

Using \(\beta^2 + \frac{1}{\beta^2} = 3 \), addition on \(\{-3, \ldots, 3\} \) is a 13-local function.

Addition on \(\{-1, 0, 1\} \) is a 21-local function. The algorithm is neighbour sensitive.
Algorithm A: Base $\beta = \frac{1+\sqrt{5}}{2}$, reduction from $\{-2, -1, 0, 1, 2\}$ to $\{-1, 0, 1, 2\}$.

Input: a finite sequence of digits (z_i) of $\{-2, -1, 0, 1, 2\}$, with $z = \sum z_i \beta^i$.

Output: a finite sequence of digits (z_i) of $\{-1, 0, 1, 2\}$, with $z = \sum z_i \beta^i$.

for each i in parallel do

1. case $\begin{cases} z_i = -2 \\ z_i = -1 \\ z_i = 0 \text{ and } z_{i+2} < 0 \text{ and } z_{i-2} < 0 \end{cases}$ then $q_i := -1$

 else $q_i := 0$

2. $z_i := z_i - 3q_i + q_{i+2} + q_{i-2}$
Algorithm B: Base $\beta = \frac{1+\sqrt{5}}{2}$, reduction from $\{-1,0,1,2\}$ to $\{-1,0,1\}$.

Input: a finite sequence of digits (z_i) of $\{-1,0,1,2\}$, with $z = \sum z_i \beta^i$.

Output: a finite sequence of digits (z_i) of $\{-1,0,1\}$, with $z = \sum z_i \beta^i$.

for each i in parallel do

1. case

 \[
 \begin{cases}
 z_i = 2 \\
 z_i = 1 \text{ and } (z_{i+2} \geq 1 \text{ or } z_{i-2} \geq 1) \\
 z_i = 0 \text{ and } z_{i+2} = z_{i-2} = 2 \\
 z_i = 0 \text{ and } z_{i+2} = z_{i-2} = 1 \text{ and } z_{i+4} \geq 1 \text{ and } z_{i-4} \geq 1 \\
 z_i = 0 \text{ and } z_{i+2} = 2 \text{ and } z_{i-2} = 1 \text{ and } z_{i-4} \geq 1 \\
 z_i = 0 \text{ and } z_{i-2} = 2 \text{ and } z_{i+2} = 1 \text{ and } z_{i+4} \geq 1
 \end{cases}
 \]

 then $q_i := 1$

2. $z_i := z_i - 3q_i + q_{i+2} + q_{i-2}$

 else $q_i := 0$
Algorithm G: Base $\beta = \frac{1+\sqrt{5}}{2}$, parallel addition on $\mathcal{A} = \{-1, 0, 1\}$.

Input: two finite sequences of digits (x_i) and (y_i) of $\{-1, 0, 1\}$, with $x = \sum x_i \beta^i$ and $y = \sum y_i \beta^i$.

Output: a finite sequence of digits (z_i) of $\{-1, 0, 1\}$ such that

$$z = x + y = \sum z_i \beta^i.$$

for each i in parallel do

0. $v_i := x_i + y_i$
1. use Algorithm A with input (v_i) and output (w_i)
2. use Algorithm B with input (w_i) and output (z_i)
Lower bounds of minimal alphabets

A finite alphabet of contiguous integers containing 0 with at least two elements. β algebraic number, $|\beta| > 1$

Theorem

1. β a real algebraic number > 1. If addition on \mathcal{A} is computable in parallel then

$$\# \mathcal{A} \geq \lceil \beta \rceil$$

2. β an algebraic integer with minimal polynomial $f(X)$. If addition on \mathcal{A} is computable in parallel then

$$\# \mathcal{A} \geq |f(1)|$$

If β is a real algebraic integer > 1 then

$$\# \mathcal{A} \geq |f(1)| + 2$$
In the previous theorem

1. “$\# A \geq \lceil \beta \rceil$" can be replaced by

 “$\# A \geq \max\{\lceil \gamma \rceil \mid \gamma \text{ or } \gamma^{-1} \text{ is a positive conjugate of } \beta \}$”.

2. “β is an algebraic integer" can be replaced by “β or $\frac{1}{\beta}$ is an algebraic integer"

 “β is an algebraic integer > 1" can be replaced by “β is an algebraic integer and one of its algebraic conjugates is > 1".
Addition versus conversion

\[A = \{ m, \ldots, 0 \ldots, M \}. \]

1. \(m = 0 \): Addition on \(A \) is parallelizable \(\iff \)

 greatest digit elimination: \(A \cup \{ M + 1 \} \rightarrow A \)

 is parallelizable.

2. \(\{-1, 0, 1\} \subset A \): Addition on \(A \) is parallelizable \(\iff \)

 greatest digit elimination: \(A \cup \{ M + 1 \} \rightarrow A \)

 and

 smallest digit elimination: \(\{ m - 1 \} \cup A \rightarrow A \)

 are parallelizable.
How to pass from one alphabet allowing parallel addition to another one of same size

Proposition

For \(K, d \in \mathbb{Z} \), where \(0 \leq d \leq K - 1 \), denote

\[
A_{-d} = \{-d, \ldots, 0, \ldots, K - 1 - d\}.
\]

Let \(\varphi \) be a \(p \)-local function realizing conversion in base \(\beta \) from \(A_0 \cup \{K\} \) to \(A_0 \). If

\[
\varphi(\omega d \bullet d^\omega) = \omega d \bullet d^\omega \quad \text{and}
\]

\[
\varphi(\omega (K - 1 - d) \bullet (K - 1 - d)^\omega) = \omega (K - 1 - d) \bullet (K - 1 - d)^\omega
\]

then addition is performable in parallel on \(A_{-d} \) as well.
\(\beta = b, \ b \geq 2 \) integer. Minimal polynomial \(f(X) = X - b \).
Lower bound \(|f(1)| + 2 = b + 1 \) is attained.

Parallel addition is feasible on any alphabet of cardinality \(b + 1 \) containing 0, in particular on alphabets \(A = \{0, 1, \ldots, b\} \) and \(A = \{-1, 0, 1, \ldots, b - 1\} \) (folklore).

If \(b \) is even, \(b = 2a \), parallel addition is realizable on the alphabet \(A = \{-a, \ldots, a\} \) of cardinality \(b + 1 \) by the algorithm of Chow and Robertson (Cauchy).
Negative integer base

\[\beta = -b, \ b \geq 2 \text{ integer}. \]

Every integer has a unique finite representation with digits in \(\{0, 1, \ldots, b - 1\} \) (Grünwald 1885).

Minimal polynomial \(f(X) = X + b \). Lower bound \(|f(1)| = b + 1 \) is attained.

Theorem

Let \(\beta = -b \in \mathbb{Z}, \ b \geq 2 \). Any alphabet \(A \) of contiguous integers containing 0 with cardinality \(\#A = b + 1 \) allows parallel addition in base \(\beta = -b \) and this alphabet is minimal in size.
Base $\sqrt[\text{k}]{b}$, b integer, $|b| \geq 2$

Proposition
Let $\beta = \sqrt[\text{k}]{b}$, b in \mathbb{Z}, $|b| \geq 2$ and $k \geq 1$ integer. Any alphabet A of contiguous integers containing 0 with cardinality $\#A = b + 1$ allows parallel addition.

Use that $\gamma = \beta^k = b$.

Proposition
If b is in \mathbb{N} the polynomial $X^k - b$ is minimal for β, thus the cardinality $b + 1$ is minimal.
Complex bases

Penney numeration system (1964): every Gaussian integer has a unique finite expansion in base $\beta = -1 + i$ with digits in \{0, 1\}. Thus it is a canonical numeration system. Example: $3 = 1101$.

Minimal polynomial $f(X) = X^2 + 2X + 2$, and lower bound $= |f(1)| = 5$.

$\beta^4 = -4$. Parallel addition is possible on any alphabet of minimal cardinality 5.
Complex bases

Penney numeration system (1964): every Gaussian integer has a unique finite expansion in base $\beta = -1 + i$ with digits in \{0, 1\}. Thus it is a canonical numeration system. Example: $3 = 1101$.
Minimal polynomial $f(X) = X^2 + 2X + 2$, and lower bound $= |f(1)| = 5$.
$\beta^4 = -4$. Parallel addition is possible on any alphabet of minimal cardinality 5.

Knuth numeration system (1955): $\beta = 2i$ with digits in \{0, \ldots, 3\}.
Minimal polynomial $f(X) = X^2 + 4$, and lower bound $= |f(1)| = 5$. Parallel addition is possible on any alphabet of minimal cardinality 5.
Complex bases

Penney numeration system (1964): every Gaussian integer has a unique finite expansion in base $\beta = -1 + i$ with digits in $\{0, 1\}$. Thus it is a canonical numeration system. Example: $3 = 1101$. Minimal polynomial $f(X) = X^2 + 2X + 2$, and lower bound $=|f(1)| = 5$. $\beta^4 = -4$. Parallel addition is possible on any alphabet of minimal cardinality 5.

Knuth numeration system (1955): $\beta = 2i$ with digits in $\{0, \ldots, 3\}$. Minimal polynomial $f(X) = X^2 + 4$, and lower bound $=|f(1)| = 5$. Parallel addition is possible on any alphabet of minimal cardinality 5.

$\beta = i\sqrt{2}$ with digits in $\{0, 1\}$. Minimal polynomial $f(X) = X^2 + 2$, and lower bound $=|f(1)| = 3$. Parallel addition is possible on any alphabet of minimal cardinality 3.
\(\beta \) root of \(X^2 = aX - 1, \ a \geq 3 \)

\(\beta \) is a quadratic Pisot unit.
By the greedy algorithm of Rényi 1957, every positive real has an expansion on the canonical alphabet \(C = \{0, \ldots, a-1\} \).
Uniqueness iff avoids any string of the form \((a-1)(a-2)^k(a-1)\).
If no admissibility condition, then redundancy, which is sufficient.

Minimal polynomial \(f(X) = X^2 - aX + 1 \) and lower bound = \(|f(1)| + 2 = a \)

Theorem
\(\beta \) root of \(X^2 = aX - 1, \ a \geq 3 \). Every alphabet of size \(a \) containing 0 allows parallel addition.
\[\beta \text{ root of } X^2 = aX + 1, \ a \geq 1 \]

\(\beta \) is a quadratic Pisot unit.
Every positive real has an expansion on the canonical alphabet \(C = \{0, \ldots, a\} \).
Uniqueness iff avoids any string of the form \(a1 \).
If no admissibility condition, then redundancy, but it’s not sufficient.

\(a = 1 \): Golden Mean. Minimal alphabet has size 3.

Minimal polynomial \(f(X) = X^2 - aX - 1 \) and lower bound =
\[|f(1)| + 2 = a + 2 \]

Theorem
\(\beta \text{ root of } X^2 = aX + 1, \ a \geq 1 \). Every alphabet of size \(a + 2 \) containing 0 allows parallel addition.
Positive rational base $\beta = a/b$

By a modification of the Euclidean division algorithm any natural integer has a unique and finite expansion on the alphabet $\{0, \ldots, a - 1\}$ in base $\beta = a/b$ (Akiyama, Frougny and Sakarovitch 2008; Frougny and Klouda 2011).

Example: $\beta = 3/2$, then $4 = 21$

If $b \geq 2$, a/b is an algebraic number which is not an algebraic integer, so our lower bound is $\lceil a/b \rceil$, which is not attained.

Theorem

In base $\beta = a/b$, with a and b co-prime such that $a > b \geq 1$, the only alphabets of minimal cardinality $a + b$ allowing parallel addition are:

- $\{0, \ldots, a + b - 1\}$ and $\{-a - b + 1, \ldots, 0\}$
- every alphabet of cardinality $a + b$ containing $\{-b, \ldots, 0, \ldots, b\}$.
Negative rational base $\beta = -a/b$

By a modification of the Euclidean division algorithm any integer has a unique and finite expansion on the alphabet $\{0, \ldots, a-1\}$ in base $\beta = -a/b$ (F. and Klouda 2011). Thus $(-a/b, \{0, \ldots, a-1\})$ forms a canonical numeration system.

If $b \geq 2$, $-a/b$ is a negative algebraic number which is not an algebraic integer, so we have no lower bound.

Theorem

In base $\beta = -a/b$, with a and b co-prime such that $a > b \geq 1$, every alphabet of minimal cardinality $a + b$ containing 0 allows parallel addition.
<table>
<thead>
<tr>
<th>Base</th>
<th>Canonical alphabet</th>
<th>Minimal alphabet for parallel addition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \geq 2$ in \mathbb{N}</td>
<td>${0, \ldots, b - 1}$</td>
<td>All alphabets of size $b + 1$</td>
</tr>
<tr>
<td>$-b$, $b \geq 2$ in \mathbb{N}</td>
<td>${0, \ldots, b - 1}$</td>
<td>All alphabets of size $b + 1$</td>
</tr>
<tr>
<td>$k\sqrt{b}$, $b \geq 2$ in \mathbb{N}</td>
<td>${0, 1}$</td>
<td>All alphabets of size $b + 1$</td>
</tr>
<tr>
<td>$-1 + \iota$</td>
<td>${0, 1}$</td>
<td>All alphabets of size 5</td>
</tr>
<tr>
<td>2ι</td>
<td>${0, \ldots, 3}$</td>
<td>All alphabets of size 5</td>
</tr>
<tr>
<td>$\iota\sqrt{2}$</td>
<td>${0, 1}$</td>
<td>All alphabets of size 3</td>
</tr>
<tr>
<td>$\beta^2 = a\beta - 1$</td>
<td>${0, \ldots, a - 1}$</td>
<td>All alphabets of size a</td>
</tr>
<tr>
<td>$\beta^2 = a\beta + 1$</td>
<td>${0, \ldots, a}$</td>
<td>All alphabets of size $a + 2$</td>
</tr>
<tr>
<td>a/b</td>
<td>${0, \ldots, a - 1}$</td>
<td>${0, \ldots, a + b - 1}$, ${-a - b + 1, \ldots, 0}$, and all alphabets of size $a + b$ containing ${-b, \ldots, 0, \ldots, b}$</td>
</tr>
<tr>
<td>$-a/b$</td>
<td>${0, \ldots, a - 1}$</td>
<td>All alphabets of size $a + b$</td>
</tr>
</tbody>
</table>