Maximal pattern complexity, dual system and pattern recognition

Yu-Mei XUE and Teturo KAMAE
Beihang University, Beijing, China.

Abstract

For a family Ω of sets in \mathbb{R}^2 and a finite subset S of \mathbb{R}^2, let $p_\Omega(S)$ be the number of distinct sets of the form $S \cap \omega$ for all $\omega \in \Omega$. The maximum pattern complexity $p^*_\Omega(k)$ is the maximum of $p_\Omega(S)$ among S with $\#S = k$. The S attaining the maximum is considered as the most effective sampling to distinguish the sets in Ω. We obtain the exact values or at least the order of $p^*_\Omega(k)$ in k for various classes Ω. We also discuss the dual problem in the case that $\#\Omega = \infty$, that is, consider the partition of \mathbb{R}^2 generated by a finite family $T \subseteq \Omega$. The number of elements in the partition is written as $p_{\mathbb{R}^2}(T)$ and $p^*_{\mathbb{R}^2}(k)$ is the maximum of $p_{\mathbb{R}^2}(T)$ among T with $\#T = k$. Here, $p^*_\Omega(k) = p^*_{\mathbb{R}^2}(k)$ does not hold in general.

For the general setting that Ω is an infinite subset of A^Σ, where A is a finite alphabet, Σ is an arbitrary infinite set, and $p_\Omega(k) = \max_{\#S=k} \#\Omega|S$, it is known that the entropy

$$h(\Omega) := \lim_{k \to \infty} \frac{\log p^*_\Omega(k)}{k}$$

exists and takes value in $\{\log 1, \log 2, \cdots, \log \#A\}$. In this paper, we prove that the entropy $h(\Sigma)$ of the dual system coincides with $h(\Omega)$.

1